search

UMD     This Site






The U.S. Department of Commerce and the National Institute of Standards and Technology (NIST) have partnered to grant Professor Gang Qu (ECE/ISR/MC2) approximately $100,000 to study the use of Silicon Physical Unclonable Functions (PUFs) as an entropy source.

Cryptographic keys play a vital role in modern cryptography and almost all security applications. A short key is easy to break, but a longer key does not guarantee better security. For a key to be strong, it must be random and unpredictable, which can be measured by entropy. In this project, Dr. Qu will investigate whether the randomness in silicon fabrication variation can be captured and used as a source to generate entropy and to enhance the quality of other entropy sources. 

"This is the first time that the NIST Computer Security Division awards a research grant specifically focused on randomness extraction in hardware security research," said Dr. Apostol Vassilev, the technical director of NIST's Cryptographic Module Validation Program, "It will be very interesting to investigate how hardware can generate entropy and we are excited about the opportunity to work with Dr. Qu and his group."

Ring Oscillator (RO) PUF captures the timing difference of a pair ROs introduced during the fabrication process and defines one bit of information based on which RO is faster. Since 2008, Dr. Qu and his group have published a series of research papers on how to improve the security, robustness, and hardware efficiency of RO PUF. In this one-year project, the research team proposes to conduct both a theoretical analysis on the entropy provided by different implementations of RO PUF and hardware simulation and prototyping to collect empirical evidence. In addition, the team will exploit how silicon PUF can be integrated with other entropy sources. The researchers anticipate that successful completion of this project will also directly impact hardware related design for trustworthy computing, which is critically important for cybersecurity.

Dr. Qu, a leader in hardware security research, is known for his work on hardware design intellectual property protection (by watermarking, fingerprinting, and obfuscation), ring oscillator physical unclonable functions (PUF), trusted integrated circuit design, and their applications in the Internet of Things (IoT). He is currently leading the Maryland Embedded Systems and Hardware Security (MeshSec) lab and the Wireless Sensor Laboratory. 



Related Articles:
PUF-based key holds promise for IC security
UMD Researchers Creating First Onboard Fast-Charging System for Electric Vehicles
NSF Funds Novel Research to Create Scalable Wireless Networking, Averting Usage Crisis
Deepfake Detection Invention Discerns Between Real and Fake Media
Improving Fairness and Trust in AI Used for College Admissions and Language Translation
New security method for integrated circuits developed by Srivastava-Northrop Grumman team
Securing IC encryption during manufacturing and testing
Reliability Engineering Ph.D./ECE M.S. student Paul Watrobski and colleagues write NIST IoT devices white paper
Srivastava wins NSF funding for integrated circuit fabrication security
Yuntao Liu receives Wylie Dissertation Fellowship

January 5, 2016


«Previous Story  

 

 

"This is the first time that the NIST Computer Security Division awards a research grant specifically focused on randomness extraction in hardware security research."

Dr. Apostol Vassilev

Technical Director
Cryptographic Module Validation Program
NIST

Current Headlines

UMD Launches Institute Focused on Ethical AI Development

Remembering Rance Cleaveland (1961-2024)

Dinesh Manocha Inducted into IEEE VGTC Virtual Reality Academy

ECE Ph.D. Student Ayooluwa (“Ayo”) Ajiboye Recognized at APEC 2024

Balachandran, Cameron, Yu Receive 2024 MURI Award

UMD, Booz Allen Hamilton Announce Collaboration with MMEC

New Research Suggests Gossip “Not Always a Bad Thing”

Ingestible Capsule Technology Research on Front Cover of Journal

Governor’s Cabinet Meeting Features Peek into Southern Maryland Research and Collaboration

Celebrating the Impact of Black Maryland Engineers and Leaders

 
 
Back to top  
Home Clark School Home UMD Home