UMD     This Site

Professor Rance Cleaveland (CS/ISR) is the principal investigator and Professor Steve Marcus (ECE/ISR) is co-PI of a new National Science Foundation Cyber-Physical Systems Breakthrough grant, ?Compositional Modeling of Cyber-Physical Systems.?

The three-year, $500K grant will develop new mathematical modeling techniques for cyber-physical systems. Cleaveland and Marcus will devise novel conceptual methods for assembling systems from subsystems, and for reasoning about the behavior of systems in terms of the behavior of their computational or physical subsystems. The research will enable scientists and engineers to develop more realistic models of the systems they are designing, and to obtain greater insights into the eventual behavior of these systems without having to build costly prototypes.

Specifically, the researchers will develop the novel modeling paradigm Generalized Synchronization Trees (GSTs) into a rich framework for both describing cyber-physical systems (CPSs) and studying their behavior under interconnection. GSTs are inspired by Milner's use of Synchronization Trees (STs) to model interconnected computing processes, but GSTs generalize the mathematical structure of their forebears in such a way as to encompass systems with discrete ("Cyber") as well as continuous ("Physical") dynamics.

As Milner did for STs, Cleaveland and Marcus will develop an algebraic theory of composition for GSTs. Such theories have a particular advantage over non-algebraic ones: because the composition of two (or more) objects results in an object of the same type, composition operators can be nested to build large structures out of smaller ones. Thus, the theory of GSTs is inherently compositional. The development of the theory involves five distinct but complementary endeavors. Standard models for cyber-physical systems are being encoded as GSTs in a semantically robust way; meaningful notions of composition and congruence for CPSs are being described and studied algebraically; the interplay between behavioral equivalence and the preservation of system properties is being investigated; a notion of real-time (or clock time) is under consideration for GSTs; and GSTs are being assessed as modeling tools for practical design scenarios.

Related Articles:
Five recipients of ISR Graduate Student Travel Award announced
Maryland researchers awarded $1M DARPA Lagrange program cooperative agreement
Public health planners: Free resources for emergency health clinics
New model predictive control framework improves reactive navigation for autonomous robots
New simulator models 3D DRAM thermal characteristics and timings
Port-Hamiltonian modeling formalism framework proposed for swarms
Data fusion modeling can estimate residential radon levels
Brain and Behavior Initiative Hosts 3rd Annual Seed Grant Symposium
Fu, Ryzhov, Qu are issued patent for B2B optimal bidding
Shoukry, Krishnaprasad receive NSF grant for resilient-by-cognition cyber-physical systems

August 29, 2014

«Previous Story  



Current Headlines

Reliability Engineering Ph.D./ECE M.S. student Paul Watrobski and colleagues write NIST IoT devices white paper

Abed on NSF Engineering CAREER Proposal Writing Workshop Committee

2020 Energy Seed Grants Awarded

Former post-doc Pomerantseva earns tenure at Drexel

In Race With Virus, Researchers Speed Development of Medical Equipment

GAMMA Group's Research on Emotional Modeling and Social Robotics Featured in Forbes

Srivastava wins NSF funding for integrated circuit fabrication security

Protection Collections Abound for Local Health Care Workers

New U.S. Patent: Integrated Onboard Chargers for Plug-In Vehicles

Public health planners: Free resources for emergency health clinics

Back to top  
Home Clark School Home UMD Home