search

UMD     This Site





A schematic of a hybrid molecular device shows metal electrodes connected by a
percolation pathway composed of dithiol-PZn3-coated Au nanoparticles.

A schematic of a hybrid molecular device shows metal electrodes connected by a percolation pathway composed of dithiol-PZn3-coated Au nanoparticles.

 

The Materials Research Society?s May 2010 MRS Bulletin includes a story on research completed by MSE Ph.D. student Parag Banerjee during a recent internship at the University of Pennsylvania. Banerjee?s advisor is Maryland NanoCenter Director Gary Rubloff (MSE/ISR).

The paper, Plasmon-Induced Electrical Conduction in Molecular Devices, originally appeared in the Feb. 23 issue of the American Chemical Society?s ACS Nano journal. Banerjee?s co-authors are Dawn A. Bonnell, David Conklin, Sanjini Nanayakkara and Tae-Hong Park of the University of Pennsylvania; and Michael J. Therien of Duke University.

The paper demonstrates the ability of surface plasmons to alter the electrical properties of a molecular junction by coupling gold nanoparticle arrays with highly conjugated, chromophoric wires. Since molecular compounds exhibit a wide range of optical and electrical properties, the strategies for fabrication, testing and analysis elucidated in this paper can form the basis of a new set of devices in which plasmon-controlled electrical properties of single molecules could be designed with wide implications to plasmonic circuits and optoelectronic and energy harvesting devices.



Related Articles:
Shapiro wins NSF grant for magnetic focusing of magnetic particle therapies
Profile of alumnus Parag Banerjee
Clark School honors Rajkowski, Beyaz, Banerjee for student research

May 17, 2010


«Previous Story  

 

 

Current Headlines

Applications Open for Professor and Chair of UMD's Department of Materials Science and Engineering

Ghodssi Honored With Gaede-Langmuir Award

Milchberg and Wu named Distinguished University Professors

New features on ingestible capsule will deliver targeted drugs to better treat IBD, Crohn’s disease

Forty years of MEMS research at the Hilton Head Workshop

Baturalp Buyukates (ECE Ph.D. ’21) Honored by IEEE ComSoc

ECE/ISR Ph.D. Students Win Hardware Demo Competitions in HOST Symposium  

Two Papers on  Gut-Microbiome-Brain-Axis (GMBA) Published

University of Maryland Has Strong Presence at ICRA 2024

Khaligh Honored With Linda Clement Outstanding Advisor Award

 
 
Back to top  
Home Clark School Home UMD Home