search

UMD     This Site





Clockwise from top left, Bill Bentley, Greg Payne, Reza Ghodssi, Gary Rubloff.

Clockwise from top left, Bill Bentley, Greg Payne, Reza Ghodssi, Gary Rubloff.

 

Associate Professor Reza Ghodssi (ECE/ISR) and Maryland NanoCenter Director and Professor Gary Rubloff (MSE/ISR/ECE) are part of a new four-year, nearly $2 million National Science Foundation Emerging Frontiers in Research and Innovation-Cellular and Biomolecular Engineering (EFRI-CBE) grant. EFRI is NSF's newest and most competitive grant; only 12 were awarded in this cycle. The goal of Biofunctionalized Devices?On Chip Signaling and "Rewiring" Bacterial Cell-Cell Communication is to demonstrate signal translation by employing device-based electrical signals to guide the assembly of biosynthetic pathways, cell-based sensors, and cell-based actuators within a microelectromechnical system (MEMS); and to use on-board electrical, magnetic, mechanical, and optical systems to feedback and guide the cell-based system towards user-specified outcomes.

The principal investigator for the project is Professor William Bentley, chair of the University of Maryland's Fischell Department of Bioengineering. In addition to Ghodssi and Rubloff, the investigative team also includes Gregory Payne, director of the Center for Biosystems Research at the University of Maryland Biotechnology Institute. Ghodssi is the principal investigator for the ECE/ISR portion of the grant.

The target of this project is the cell-cell communication system mediated by bacterial signaling autoinducers in a process known as quorum sensing. The PIs have created a computational model that captures the dynamics of quorum signal generation, receptor driven recognition, and uptake. This model, based on biochemical and biophysical processes, will help the conceptual design of subsystem synthons assembled architectures that guide heterologous protein synthesis in response to specific biomolecular cues. Cells will be signaled to initiate biofilm formation and maturation. The MEMS environment will enable for the first time, an experimental platform for the design, construction, and testing of this cell-based signal transduction process. Moreover, this MEMS environment will detect cell function and, by guiding signaling pathways, change cell phenotype in a controlled and directed manner.

The PIs will enlist guidance and support from industry, which may spawn new efforts in device fabrication, embedded sensor systems, bacterial pathogenicity, biofilm formation, genetic regulation and signal transduction. Developments are envisioned that impact fields of medicine (drug discovery, synthesis, and delivery), communications (biofunctionalized microfabricated devices), and security (smart sensors).

Related Articles:
Biofilm treatment device receives TEDCO MII funding; paper published in IEEE TBME
Research Paper and Cover Art Now Feature Article in Journal
Ingestible Capsule Advances May Lead to Earlier Detection of Diseases
Ghodssi Honored With Gaede-Langmuir Award
New features on ingestible capsule will deliver targeted drugs to better treat IBD, Crohn’s disease
Ingestible Capsule Technology Research on Front Cover of Journal
Gut Health Monitoring Gas Sensors Added to Ingestible Capsule Technology
New ‘FRRB’ packaging technology may solve an ingestible capsule challenge
Ghodssi invited speaker at NIMH workshop on sensor technologies to capture the complexity of behavior
MSAL’s work on serotonin characterization and detection results in two journal covers

August 28, 2007


«Previous Story  

 

 

Current Headlines

MRC Symposium Showcases Advances in Robotics and AI

New UMD–KTH MOU Broadens Student and Faculty Horizons

76 Undergrads Recognized at Annual Honors & Awards Celebration

MRC Self-Driving Scooter Research Featured on WUSA9

Professor Derek Paley Wins 2025 Clark School Research Award

An Advanced Space for Enhanced Education

MATRIX-Affiliated Faculty Solving Tomorrow's Challenges Today

How the Brain Builds Meaning from Sound

Research by Jonathan Simon Supported by KU Leuven Global Seed Fund

Maryland Engineering: Top 10 Among Public Graduate Programs, 7 Years Running

 
 
Back to top  
Home Clark School Home UMD Home