search

UMD     This Site





Reliable estimation of tail probabilities is important in fields from finance, to geophysics, to meteorology, to the design of ships, and to optics.

A new paper published in Mathematics and Statistics presents the novel statistical idea of “Down-Up” sequences which “capture” small tail probabilities with surprising precision without knowing the underlying probability distributions. In Estimation of Small Tail Probabilities by Repeated Fusion, ISR-affiliated Professor Benjamin Kedem (Math) and his colleagues Lemeng Pan, Paul J. Smith and Chen Wang describe the idea, its implementation, and its usefulness in the estimation of small tail probabilities using limited amounts of data.

They show how to estimate any threshold probability from data below or even far below the threshold through repeated fusion of the data with externally generated random samples. This is referred to as repeated out of sample fusion (ROSF). A comparison of the approach with peaks-over-threshold (POT) across different tail types shows that ROSF provides more precise point and interval estimates based on moderately large samples.

The ideas presented in this paper can be extended in a number of ways, such as using “fake” data from distributions other than uniform, and using different fusion mechanisms together with appropriate inferential methods other than the semiparametric method used in the paper. Different ways of connecting X0 and the fusion samples can be explored, other than by means of their distributions as expressed by the density ratio model.



Related Articles:
Alumnus Amir Ali Ahmadi receives PECASE Award
Computational framework automatically optimizes the shape of tissue engineered vascular grafts
Srivastava wins NSF funding for integrated circuit fabrication security
Alumnus Donald Martin honored by Network of Minorities in Mathematical Sciences
Nuno Martins, alum Shinkyu Park and Jeff Shamma lead tutorial session at IEEE CDC 2019
Hybrid compositional planning for UAV rescue missions
Data fusion modeling can estimate residential radon levels
Ryzhov, Chen develop theoretical framework for approximate Bayesian learning
'Safety smart list' can decrease time in ICU, lower hospital costs
Fu, Ryzhov, Qu are issued patent for B2B optimal bidding

February 11, 2020


«Previous Story  

 

 

Current Headlines

Chrysa Papagianni appointed to University of Amsterdam faculty

David L. Elliott: An Appreciation

Deep learning helps aerial robots gauge where they are

2020 Dean's Doctoral Student Research Awards

Ben Kedem named JTSA Distinguished Author

Legacy through Impact: Dr. Darryll J. Pines

Rapidly evolving ‘smart marble’ sensors hold promise for monitoring pharmaceutical industry bioreactors and beyond

PUF-based key holds promise for IC security

Maryland-led, Multi-institutional Research Team Receives $10M to Transform Shellfish Farming with Smart Technology

GAMMA Research Group is Developing Novel COVID-19 Prevention Robots

 
 
Back to top  
Home Clark School Home UMD Home